Tsetse Flies

Published on November 30, 2015 by

Predicting the effect of climate change on the abundance and distribution of tsetse flies

Tsetse flies (genus Glossina) can threaten health and agriculture by transmitting the parasites that cause the potentially fatal diseases of sleeping sickness in humans and nagana in livestock. The fact that only parts of sub-Saharan Africa are infested is attributable to many causes, including the temperature in the area. This raises the possibility that climate change will affect the abundance and distribution of tsetse – the leading questions being how great and how rapid the effects will be. SACEMA is addressing these questions by a combination of field work and simulation modelling.

Published on November 30, 2012 by

Editorial: Climate change and tsetse flies

One of the articles in this edition concerns the modelling of the control of the tsetse-borne disease trypanosomiasis using trypanocides or insecticide-treated livestock. SACEMA has been short-listed for WHO/TDR funding of a project focussing on modelling the way in which various climate change scenarios might affect the population dynamics of tsetse flies and the trypanosomes that they transmit. For this study we have access to large, long-term, unique archives of data of the type required to address these questions. These data will be augmented during the study through field studies in Zimbabwe and Tanzania, aimed at understanding the spatiotemporal variability of disease threat and how this is likely to change at different locations and altitudes in the context of climate change. Field studies will address particularly the problem of the interface between humans and tsetse, and suggest optimal methods of disease control.

Published on November 30, 2012 by

Modelling the control of Trypanosomiasis using trypanocides or insecticide-treated livestock

Across sub-Saharan Africa, several species of trypanosome, transmitted by tsetse flies (Glossina spp), cause human and animal trypanosomiasis. While interventions can be directed against either the vector or the parasite, emphasis has usually been on the use of drugs to treat the disease both in humans and in livestock. Several advances in our understanding of tsetse biology and ecology and improvements in the cost-effectiveness of tsetse control have revived interest in the vector control approach to disease management. This article discusses and compares two different approaches to the control of trypanosomiasis in cattle: either we can control the disease by treating cattle with insecticides that kill the tsetse vectors without having any direct effect on the trypanosomes. Or we can inject the cattle with trypanocides that kill the parasites but leave the tsetse flies unharmed.