

Downloaded from www.sacemaquarterly.com | The quarterly update on epidemiology from the South African Centre for Epidemiological

Modelling and Analysis (SACEMA).

Published: June 2015

1

Speeding up agent-based modelling of sexually transmitted diseases

Nathan Geffen - PhD Student, Centre for Social Science Research, University of Cape Town.

Agent-based modelling, also called microsimulation,

is a way of modelling epidemics that is growing in

popularity. Instead of the traditional way of

modelling using differential equations, an agent-

based model consists of, perhaps, thousands of

agents, each representing a person, and each

behaving according to a simple set of rules (1).

Instead of outputs such as infection and mortality

rates being derived from equations, they are derived

from the interactions of the agents over many

iterations. These models are providing rich insights

into the HIV epidemic (2, 3).

Agent-based models are more computationally

intensive than traditional equation-based models, but

they have some characteristics that make them

attractive. They are stochastic: randomness is built

into them. While simple models are usually easier to

implement as a set of differential equations, as the

number of variables increases and models become

increasingly complex, equation-based models

become unwieldy and ultimately impractical. Yet the

rules of each agent in an agent-based model can be

made quite complex without much difficulty, and the

model, if designed well, will scale. Agent-based

models also allow researchers to examine what

happens to specific agents or groups of agents more

easily than equation-based models. Equation-based

models do allow a population to be broken down into

different compartments, but having multiple

compartments can quickly become unmanageable.

How agent-based models work

Events in agent-based models can be simulated in

discrete or continuous time. Here we are primarily

concerned with discrete microsimulation, but key

principles are for the most part the same between

them.

At the beginning of the simulation you initialise a

population of agents with information. So if

simulating the HIV epidemic perhaps you can give

each agent an initial age, HIV infection status, sex

and a parameter describing how often they form new

sexual partnerships.

Then, for a discrete model, decide on a time-step, say

one day, one week or one month. Also decide how

many time-steps to run the simulation for. So if the

time-step is one month, to execute the simulation for

20 years, 240 iterations are needed. Each iteration

involves interactions of agents and events. Examples

of events are DIE, which determines if it is an agent's

turn to die, INFECT which determines if it is an

agent's turn to contract, say, HIV, MATCH, which

finds a new sexual partner for an agent, or BIRTH

which decides whether or not an agent is to give birth

to a new agent. So on each iteration, the simulation

steps through every agent and applies events to it.

During and at the end of the simulation, we calculate

interesting information such as life-expectancy of the

simulated population and the changes in the HIV

prevalence and incidence rates over time.

This is a typical structure of a discrete

microsimulation. Variations are possible, including

swapping lines 2 and 3.

1

2

3

4

5

for each time-step

for each event E

for each agent A

if E should be applied to A

apply E to A

We are particularly interested in lines 3 to 5. The

event applied in line 5 can either be a simple

operation that considers only agent A, or it can be

more complicated and consider a range of agents

(maybe even all the other agents) with respect to A.

The former will typically be fast, the latter is slow.

Speed and agent-based models

Speed is a problem for agent-based modelling. Only

in the last fifteen years or so have personal computers

reached a point where it is convenient to do agent-

based disease modelling on them. While running a

single simulation for a few minutes might not be

inconvenient, we often need to run thousands of

simulations, especially if we wish to do sensitivity

testing and uncertainty analysis.

Let's say we want to execute an agent-based

simulation on a standard mid-range laptop. There are

several ways to speed it up:

 Code it in a faster lower-level language,

such as C or C++ and be sure to use the

compiler optimisations.

 Do multi-threading programming, so that all

processors in your computer are put to use.

 Improve algorithms that are slow.

2

Currently I am doing all three of these as part of my

PhD research. But it is improving the partner

matching event by finding better algorithms that is

proving the most interesting and effective.

Fast versus slow events

Let's consider the DIE event. On an iteration, it will

be checked to see if it must be applied to every living

agent. Assume a particular agent has a risk of dying

in a given time step of 1%, or 0.01. Then the DIE

event generates a uniform pseudo-random number on

the range [0,1). If the random number is less than 0.1,

the agent dies, else it lives for another time step.

The time that it takes DIE to execute on an iteration

of the simulation is proportional to n, the number of

agents. We write:

T ∝ n

Now consider the partner matching event, MATCH.

We want to match agent, A, with some other suitable

agent in our simulation. In a first naïve

approximation of how we code this, which we call

BruteForceMatch, we could examine every other

agent in the simulation to find a partner, B, with

whom to match A. Here is pseudo-code to do this for

every agent:

BruteForceMatch(agents)

// agents are stored in an array or list

Place all the agents, randomly, in a queue

For each agent, A, in the queue

For each agent, B, behind A in the queue

Determine if it's a suitable partner

Remove A and its chosen partner from the queue

In general, assuming all agents need to be matched,

the execution time, T, over n agents, for this

algorithm is T ∝ [(n−1)+(n−2)+(n−3)+...+3+2+1].

Thus T equals (n
2
-n)/2.

Examine this table to see how much faster the DIE

event is than the MATCH event.

Agents (n) n (n
2
−n)/2

10 10 45

100 100 4,950

1,000 1,000 499,500

10,000 10,000 49,995,000

100,000 100,000 4,999,950,000

1,000,000 1,000,000 499,999,500,000

For simplicity, we can say that we have this

relationship between T and n:

T ∝ n
2.

In computer science we call DIE an O(n) algorithm

and MATCH an O(n
2
) (4). Of practical importance

too are O(n log n) algorithms.

This graph depicts the time differences between algorithms in these three efficiency classes:

3

Let's say we have a simulation with one million

agents and it takes nearly six days to execute an O(n
2
)

event. If we can find an algorithm to execute that

event in O(n) or O(n log n) time, we can expect our

event to execute in several seconds. This, intuitively

(and with a bit of over-simplification), is why

improving algorithms is often the most effective way

to speed up a program.

Speeding up partner matching algorithms

Partner matching is a vital part of agent-based

modelling. In a model developed by Leigh Johnson,

the MATCH algorithm (which is a bit different and

more complicated than the one described above) was

at one point O(n
2
). Various modifications have sped

it up (5). However, for my PhD I am researching

generally applicable fast algorithms that other

modellers can use easily.

Thus far I have identified three possibly useful

algorithms. I describe here just one of them,

ClusterShuffleMatch. The other two,

WeightedShuffleMatch and RandomMatchK are

described on the webpage. ClusterShuffleMatch

depends on a distance measure and a cluster measure.

We define a distance measure between the agents.

The smaller the distance between any two agents, the

more suitable a match they are. Examples of

characteristics informing the distance measure could

be risk behaviour, geographic location, age and

socio-economic status.

Usually when we think of distance measures, we

think of Euclidean distance. There are good

algorithms for finding suitable matches between

points in Euclidean space. Unfortunately for

technical reasons explained on the webpage, it is not

usually possible to use a Euclidean metric for

matching sexual partners.

We also need a clustering measure that ensures that

agents with similar characteristics are clustered

together. Examples of distance and cluster measures

are given on the webpage.

Our algorithm works as follows: First we assign

every agent a value, the cluster measure, such that

agents that are likely to be matched hopefully have a

similar value. Then we sort the agents into a queue

based on their cluster value. We divide the agents

into equally sized clusters (log n for the size of each

cluster appears to be a good value in ad hoc testing)

and shuffle them within their clusters so as to

introduce stochastic behaviour into partner matching.

We then look at each agent's k nearest neighbours

(where k is a user-defined value, typically equal to a

factor of log n from 1 to 5). The partner selected is

the most suitable match determined by the distance

calculation of the k neighbours of the agent under

consideration.

Here is the pseudocode

ClusterShuffleMatch(Agents, c, k)

// Agents is an array of agents

// c is the number of clusters

// k is the number of neighbours to search

for each agent, a, in Agents

a.weight = cluster(a)

sort agents in weight order

cluster_size = number of agents / c

i = 0

for each cluster

first = i * cluster_size

last = first + cluster_size

shuffle Agents[first ... last - 1]

++i

find_best_of_k_neighbours(Agents, k)

Several details are omitted which can be found on the

webpage.

The ClusterShuffleMatch algorithm is O(n log n),

assuming k and c are constant factors of log n. We

would expect it to be much faster than

BruteForceMatch. The question is how much quality

in partner selection are we sacrificing for this

increase in speed?

To get a preliminary answer to this question for this

and the other algorithms mentioned here, they were

compared for speed and suitability to an algorithm

that always finds the best partner for every agent, and

a thoroughly useless algorithm which merely

randomly matches partners. The one that finds the

very best partner is unsuitable for simulation for

several reasons (it's not stochastic, partner selection is

often not reciprocal and it is painfully slow). The

random matching algorithm, despite its uselessness,

is blindingly fast.

Hundreds of partner matching iterations were done

using 16,384 agents.

This table shows the mean speeds in milliseconds of

the algorithms (the perfect match algorithm is not

included in this table because we are not interested in

its time; it is not a suitable algorithm for simulation,

but it took about 13 seconds per iteration):

4

 Brute force Random match Random match k Cluster shuffle Weighted shuffle

Mean (ms) 2,337 2 20 21
22

This is how the five algorithms compared to the perfect matching algorithm in quality of partner selection:

More details and precision are provided on the webpage.

As can be seen, ClusterShuffleMatch, appears to offer

the best trade off in terms of speed and time (though

perhaps there are practical situations where

RandomMatchK – an algorithm not described here --

will be better). The challenge now will be to use

ClusterShuffleMatch in a simulation of an epidemic

and determine if it's much faster speed makes it a

suitable replacement of slower algorithms.

This is an edited and shortened version of an article

I've placed online:

http://nathangeffen.webfactional.com/partnermatchin

g/partnermatching.html.

Nathan Geffen - PhD Student, Centre for Social

Science Research, University of Cape Town.

Research interests: human rights aspects of HIV and

TB, as well as modelling HIV.

nathangeffen@gmail.com

References:

1. Macal CM, North MJ. Tutorial on agent-based

modelling and simulation. J Simul. 2010 Sep;4(3):151–

62.

2. Orroth KK, Freeman EE, Bakker R, Buvé A, Glynn JR,

Boily M-C, et al. Understanding the differences

between contrasting HIV epidemics in east and west

Africa: results from a simulation model of the Four

Cities Study. Sex Transm Infect. 2007;83 Suppl 1:i5–

16.

3. Hontelez JAC, Lurie MN, Bärnighausen T, Bakker R,

Baltussen R, Tanser F, et al. Elimination of HIV in

South Africa through expanded access to antiretroviral

therapy: a model comparison study. PLoS Med.

2013;10(10):e1001534.

4. Levitin A. Introduction to the Design and Analysis of

Algorithms. 3 edition. Boston: Pearson; 2011. 592 p.

5. Johnson L, Geffen N. A comparison of microsimulation

and deterministic approaches to modelling of sexually

transmitted infection dynamics. STI and AIDS World

Congress, Vienna, Austria, 14-17 July 2013. Abstract

P3227.

mailto:nathangeffen@gmail.com

