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Agent-based modelling, also called microsimulation, 

is a way of modelling epidemics that is growing in 

popularity. Instead of the traditional way of 

modelling using differential equations, an agent-

based model consists of, perhaps, thousands of 

agents, each representing a person, and each 

behaving according to a simple set of rules (1). 

Instead of outputs such as infection and mortality 

rates being derived from equations, they are derived 

from the interactions of the agents over many 

iterations.  These models are providing rich insights 

into the HIV epidemic (2, 3). 

 

Agent-based models are more computationally 

intensive than traditional equation-based models, but 

they have some characteristics that make them 

attractive. They are stochastic: randomness is built 

into them. While simple models are usually easier to 

implement as a set of differential equations, as the 

number of variables increases and models become 

increasingly complex, equation-based models 

become unwieldy and ultimately impractical. Yet the 

rules of each agent in an agent-based model can be 

made quite complex without much difficulty, and the 

model, if designed well, will scale. Agent-based 

models also allow researchers to examine what 

happens to specific agents or groups of agents more 

easily than equation-based models. Equation-based 

models do allow a population to be broken down into 

different compartments, but having multiple 

compartments can quickly become unmanageable. 

 

How agent-based models work 

 

Events in agent-based models can be simulated in 

discrete or continuous time. Here we are primarily 

concerned with discrete microsimulation, but key 

principles are for the most part the same between 

them. 

 

At the beginning of the simulation you initialise a 

population of agents with information. So if 

simulating the HIV epidemic perhaps you can give 

each agent an initial age, HIV infection status, sex 

and a parameter describing how often they form new 

sexual partnerships. 

 

Then, for a discrete model, decide on a time-step, say 

one day, one week or one month. Also decide how 

many time-steps to run the simulation for. So if the 

time-step is one month, to execute the simulation for 

20 years, 240 iterations are needed. Each iteration 

involves interactions of agents and events. Examples 

of events are DIE, which determines if it is an agent's 

turn to die, INFECT which determines if it is an 

agent's turn to contract, say, HIV, MATCH, which 

finds a new sexual partner for an agent, or BIRTH 

which decides whether or not an agent is to give birth 

to a new agent. So on each iteration, the simulation 

steps through every agent and applies events to it. 

During and at the end of the simulation, we calculate 

interesting information such as life-expectancy of the 

simulated population and the changes in the HIV 

prevalence and incidence rates over time. 

 

This is a typical structure of a discrete 

microsimulation. Variations are possible, including 

swapping lines 2 and 3. 
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for each time-step 

for each event E 

for each agent A 

if E should be applied to A 

apply E to A 

We are particularly interested in lines 3 to 5. The 

event applied in line 5 can either be a simple 

operation that considers only agent A, or it can be 

more complicated and consider a range of agents 

(maybe even all the other agents) with respect to A. 

The former will typically be fast, the latter is slow. 

 

Speed and agent-based models 

 

Speed is a problem for agent-based modelling. Only 

in the last fifteen years or so have personal computers 

reached a point where it is convenient to do agent-

based disease modelling on them. While running a 

single simulation for a few minutes might not be 

inconvenient, we often need to run thousands of 

simulations, especially if we wish to do sensitivity 

testing and uncertainty analysis. 

 

Let's say we want to execute an agent-based 

simulation on a standard mid-range laptop. There are 

several ways to speed it up: 

 Code it in a faster lower-level language, 

such as C or C++ and be sure to use the 

compiler optimisations. 

 Do multi-threading programming, so that all 

processors in your computer are put to use. 

 Improve algorithms that are slow.
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Currently I am doing all three of these as part of my 

PhD research. But it is improving the partner 

matching event by finding better algorithms that is 

proving the most interesting and effective. 

 

Fast versus slow events 

 

Let's consider the DIE event. On an iteration, it will 

be checked to see if it must be applied to every living 

agent. Assume a particular agent has a risk of dying 

in a given time step of 1%, or 0.01. Then the DIE 

event generates a uniform pseudo-random number on 

the range [0,1). If the random number is less than 0.1, 

the agent dies, else it lives for another time step. 

 

The time that it takes DIE to execute on an iteration 

of the simulation is proportional to n, the number of 

agents. We write: 

T ∝ n 
 

Now consider the partner matching event, MATCH. 

We want to match agent, A, with some other suitable 

agent in our simulation. In a first naïve 

approximation of how we code this, which we call 

BruteForceMatch, we could examine every other 

agent in the simulation to find a partner, B, with 

whom to match A. Here is pseudo-code to do this for 

every agent: 

 

BruteForceMatch(agents) 

// agents are stored in an array or list 

Place all the agents, randomly, in a queue 

For each agent, A, in the queue 

For each agent, B, behind A in the queue 

Determine if it's a suitable partner 

Remove A and its chosen partner from the queue 

 

In general, assuming all agents need to be matched, 

the execution time, T, over n agents, for this 

algorithm is  T ∝ [(n−1)+(n−2)+(n−3)+...+3+2+1]. 

Thus T equals (n
2
-n)/2. 

 

Examine this table to see how much faster the DIE 

event is than the MATCH event. 

 

Agents (n) n (n
2
−n)/2 

10 10 45 

100 100 4,950 

1,000 1,000 499,500 

10,000 10,000 49,995,000 

100,000 100,000 4,999,950,000 

1,000,000 1,000,000 499,999,500,000 

 

For simplicity, we can say that we have this 

relationship between T and n: 

T ∝  n
2. 

 

In computer science we call DIE an O(n) algorithm 

and MATCH an O(n
2
) (4). Of practical importance 

too are O(n log n) algorithms. 

  

 

This graph depicts the time differences between algorithms in these three efficiency classes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

Let's say we have a simulation with one million 

agents and it takes nearly six days to execute an O(n
2
) 

event. If we can find an algorithm to execute that 

event in O(n) or O(n log n) time, we can expect our 

event to execute in several seconds. This, intuitively 

(and with a bit of over-simplification), is why 

improving algorithms is often the most effective way 

to speed up a program. 

 

Speeding up partner matching algorithms 

 

Partner matching is a vital part of agent-based 

modelling. In a model developed by Leigh Johnson, 

the MATCH algorithm (which is a bit different and 

more complicated than the one described above) was 

at one point O(n
2
). Various modifications have sped 

it up (5). However, for my PhD I am researching 

generally applicable fast algorithms that other 

modellers can use easily. 

 

Thus far I have identified three possibly useful 

algorithms. I describe here just one of them, 

ClusterShuffleMatch.  The other two, 

WeightedShuffleMatch and RandomMatchK are 

described on the webpage. ClusterShuffleMatch 

depends on a distance measure and a cluster measure. 

 

We define a distance measure between the agents. 

The smaller the distance between any two agents, the 

more suitable a match they are. Examples of 

characteristics informing the distance measure could 

be risk behaviour, geographic location, age and 

socio-economic status. 

 

Usually when we think of distance measures, we 

think of Euclidean distance. There are good 

algorithms for finding suitable matches between 

points in Euclidean space. Unfortunately for  

technical reasons explained on the webpage, it is not 

usually possible to use a Euclidean metric for 

matching sexual partners. 

 

We also need a clustering measure that ensures that 

agents with similar characteristics are clustered 

together. Examples of distance and cluster measures 

are given on the webpage.  

 

Our algorithm works as follows: First we assign 

every agent a value, the cluster measure, such that 

agents that are likely to be matched hopefully have a 

similar value. Then we sort the agents into a queue 

based on their cluster value. We divide the agents 

into equally sized clusters (log n for the size of each 

cluster appears to be a good value in ad hoc testing) 

and shuffle them within their clusters so as to 

introduce stochastic behaviour into partner matching. 

We then look at each agent's k nearest neighbours 

(where k is a user-defined value, typically equal to a 

factor of log n from 1 to 5). The partner selected is 

the most suitable match determined by the distance 

calculation of the k neighbours of the agent under 

consideration. 

 

Here is the pseudocode 

ClusterShuffleMatch(Agents, c, k) 

// Agents is an array of agents 

// c is the number of clusters 

// k is the number of neighbours to search 

for each agent, a, in Agents 

a.weight = cluster(a) 

sort agents in weight order 

cluster_size = number of agents / c 

i = 0 

for each cluster 

first = i * cluster_size 

last = first + cluster_size 

shuffle Agents[first ... last - 1] 

++i 

find_best_of_k_neighbours(Agents, k) 

Several details are omitted which can be found on the 

webpage.  

 

The ClusterShuffleMatch algorithm is O(n log n), 

assuming k and c are constant factors of log n. We 

would expect it to be much faster than 

BruteForceMatch. The question is how much quality 

in partner selection are we sacrificing for this 

increase in speed? 

 

To get a preliminary answer to this question for this 

and the other algorithms mentioned here, they were 

compared for speed and suitability to an algorithm 

that always finds the best partner for every agent, and 

a thoroughly useless algorithm which merely 

randomly matches partners. The one that finds the 

very best partner is unsuitable for simulation for 

several reasons (it's not stochastic, partner selection is 

often not reciprocal and it is painfully slow). The 

random matching algorithm, despite its uselessness, 

is blindingly fast. 

 

Hundreds of partner matching iterations were done 

using 16,384 agents.  

 

This table shows the mean speeds in milliseconds of 

the algorithms (the perfect match algorithm is not 

included in this table because we are not interested in 

its time; it is not a suitable algorithm for simulation, 

but it took about 13 seconds per iteration):
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 Brute force Random match Random match k Cluster shuffle Weighted shuffle 

Mean (ms) 2,337 2 20 21 
22 

 

 

This is how the five algorithms compared to the perfect matching algorithm in quality of partner selection: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More details and precision are provided on the webpage.  

 

 

As can be seen, ClusterShuffleMatch, appears to offer 

the best trade off in terms of speed and time (though 

perhaps there are practical situations where 

RandomMatchK – an algorithm not described here -- 

will be better). The challenge now will be to use 

ClusterShuffleMatch in a simulation of an epidemic 

and determine if it's much faster speed makes it a 

suitable replacement of slower algorithms. 

 

This is an edited and shortened version of an article 

I've placed online:  

http://nathangeffen.webfactional.com/partnermatchin

g/partnermatching.html.  

 

Nathan Geffen - PhD Student, Centre for Social 

Science Research, University of Cape Town. 
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