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In March, I attended the SACEMA course 
Individual-Based Modelling in Epidemiology: A 
Practical Introduction. As I sat in class, my recent 
training and experience in the more traditional 
ordinary differential equation (ODE) models was 
still very fresh in my mind. However, as part of my 
own learning process, I had dabbled in formulating 
simple individual-based models (IBMs) alongside 
ODE models, and was keen to find out more about 
when and how they are used to model the 
transmission of infectious diseases. 

In contrast to population-level ODE models, IBMs 
are a bottom-up approach to modelling, where 
computer-generated unique and discrete individuals 
interact through a set of rules to form a system. In 
the last decade, IBMs have been frequently used 
across a range of disciplines, from economics to 
ecology, as computing power has increased. As 
highlighted in a systematic review published this 
year, the use of IBMs in epidemiology has 
similarly been on the rise (1).  

This systematic review reported that almost half of 
IBM publications in 2016 were focused on the 
assessment of interventions against disease – 
increasing from <10 in 2006 to >50 in 2016. 
Particularly in previous years, an equal number of 
papers have focused on methodology – the purpose 
being to describe the structure and set-up of an 
IBM rather than to address specific questions (1). 
This perhaps highlights that because IBMs often 
cannot be easily summarised succinctly by a set of 
mathematical equations, their verbal description 
with generic outputs has sometimes been published 
alone, prior to being used to analyse the specific 
dynamics of a disease in a given setting, or the 
effects of an intervention. 

The simplest of ODE models, for directly-
transmitted pathogens, frequently assume that there 
is no variation between infected individuals in the 
rate at which they stop being infectious and acquire 
immunity, that the probability of transmission 
given contact between an infected and susceptible 
individual is the same for everybody and that the 
rate at which individuals make contacts with any 
other individual in the population is the same 
across the population. However, ODEs can and 

have frequently been extended to account for 
heterogeneities in the above processes. The choice 
between using a set of ODEs, or an IBM is 
therefore perhaps not clear cut, and is likely 
influenced by the skills of the individual and the 
question of interest. Here, I summarise two papers 
that have used IBMs to assess intervention 
strategies for measles, which give a flavour of the 
types of scenarios and questions for which IBMs 
have been used. 

Measles outbreak response vaccinations 

Despite the presence of global vaccination 
programmes, measles remains an important cause 
of childhood mortality, particularly in sub-Saharan 
Africa (2). During an outbreak of measles, a 
response vaccination strategy is an option for 
reducing morbidity and mortality (3). Grais et al. 
(4) used an IBM to estimate what the likely impact 
of an outbreak response vaccination had been 
during a measles outbreak in Niamey, Niger in 
2003-2004. They also used the model to ask what 
would have happened had the intervention occurred 
earlier and what difference it would have made if 
the target age range had been expanded. 

The first complexity that the model accounted for 
was that the city of Niamey is divided into three 
communes. During the outbreak, cases were first 
reported in commune 1, spreading to commune 2 
after several weeks and were not being reported in 
commune 3 until later in the epidemic. The authors 
therefore subdivided the simulated population into 
the three communes and within each commune into 
health centres and quartiers using census data.  

The authors also noted from their previous work 
that local transmission within quartiers within a 
commune was more rapid than transmission 
between communes. They therefore had separate 
transmission rates between children within the 
same quartier, within the same health centre 
catchment area, within the same commune, and 
city-wide between communes. 

Although individuals were modelled as discrete 
entities, the duration of latent and infectious 
periods was assumed to be the same for all infected 
individuals. In addition, only children were



 

modelled that belonged to either a 6-59 month, or a 
5-15 year age group. The number of individuals in 
each age group was determined based on an age 
pyramid for Niger. Variation in vaccination history 
was included, assuming 30% of children under 15 
were susceptible and of these, 75% were between 6 
and 59 months, again based on the age pyramid. In 
reality, the intervention began 23 weeks after the 
beginning of the outbreak, and over 10 days, 57% 
of children aged 6-59 months were vaccinated, 
regardless of previous vaccination or disease status. 
This intervention was simulated in the model by 
assuming that vaccines were randomly distributed 
across the risk group. 

The IBM was fitted to reported measles cases from 
each commune and obtained a good fit to the data. 
For model fitting, and for exploring interventions 
using the fitted model, 1000 simulations were 
carried out. Multiple simulations were required 
because the model was stochastic and model results 
were expressed as medians of the distribution of 
estimated outcomes (e.g. averted cases). They 
compared the simulated epidemic with and without 
the implemented intervention and determined that a 
median of 7.6% of cases, calculated from 1000 
model simulations, had been averted as a 
consequence of the intervention. The IBM was then 
used to assess what would have happened, for a 
range of hypothetical modifications to the 
intervention. In conclusion, the model showed that 
timely outbreak response vaccinations can be 
effective at averting measles cases, but that the 
proportion of averted cases was depending on the 
vaccination coverage and the number of birth 
cohorts targeted for vaccination. 

Clustering of measles immunity and vaccination 
coverage 

In a second, more recent paper published in 2015, 
Liu et al. (5) adapt the previously published 
Framework for Reconstructing Epidemiological 
Dynamics (FRED) (6) IBM to examine the effects 
of vaccination coverage, individual behaviours and 
public health response, on measles outbreaks in 
California. Despite the elimination of endemic 
measles transmission in the US, cases continue to 
occur from importation and subsequent outbreaks 
can result from groups of intentionally 
unvaccinated individuals. When this occurs, health 
authorities carry out contact tracing to identify 
susceptible individuals who have come into contact 
with the infected person. Their model intended to 
determine under which circumstances contact 

tracing activities and the associated interventions 
help to control measles epidemics.  

Their simulated population of individuals was 
generated from a Synthetic Population Database by 
RTI International. The population represented 
every individual in the geographic location of 
interest and were given attributes consistent with 
census data from the Californian government. Each 
individual had an age and sex attribute, and 
locations for social activity including household, 
neighbourhood, school or workplace and child day 
care centres. Depending on the assigned locations 
of social activity, each individual visited his or her 
household and neighbourhood each day. If the 
individual was associated with other locations, they 
could also have visited those. Individuals could 
then interact with other individuals who shared the 
same locations on the same day. The numbers of 
contacts an individual made per day varied by 
location, according to available data. The immune 
status of individuals was also tracked and the 
degree of immune clustering could be varied. 
Transmission of measles was then simulated on this 
population. 

Contact investigation was simulated in the model. 
It was assumed that the contacts of an infectious 
case residing in their neighbourhood could not be 
identified by the public health department. 
However, it was assumed that each of the contacts 
of an identified infectious case from the household, 
school, day care and workplace settings could be 
traced and identified, with probability between 0.7 
and 1.   

The model was used to explore the effects of 
varying several parameters, including those 
associated with contact tracing and immune 
clustering, on the control of measles. In conclusion, 
their model showed that clustering of immunity and 
vaccination coverage are important characteristics 
that influence the ability to control a measles 
epidemic. 

Individual-based models may be associated with 
complexity, but that does not have to be the case. 
The model by Grais et al. (4) was relatively simple 
in that it did not consider detailed spatial dynamics, 
used constant contact rates in only two age groups 
of children and assumed that the proportion of 
susceptibles was the same in all quartiers. They 
highlight that more complex models will be 
explored. Importantly, starting with a simpler 
model should allow a better understanding of what



 

the effects of adding in extra complexities has on 
model predictions of the effects of simulated 
interventions. 

The model by Liu et al. (5) was perhaps more 
complex, assigning individuals age, sex and 
specific location attributes, variable contact rates 
depending on location, in addition to varying the 
level of vaccination coverage and clustering of 
individuals with immunity. It was acknowledged 
that there was not a lot of empirical evidence for 
the behaviour-related parameters in the model, but 
to account for this they incorporated a broad range 
of parameter values to explore the effects of 
changing these parameters on model outputs. The 
emphasis of this model was to explore the effects 
of these complexities on an outbreak, thus detailed 
sensitivity analyses were sufficient to account for 
uncertainty in parameter values. 

Together, these two papers highlight that IBMs can 
have varying levels of complexity, should, where 
possible, be fitted to data, must be subject to 
thorough sensitivity analyses in the case of missing 
data, and can be very useful for the assessment of 
intervention strategies in specific times and places. 
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